Atomic Layer Deposition Techniques and Films by the University of Colorado

Atomic layer deposition (ALD):

ALD is a thin film growth technique that relies on two sequential, self-limiting surface reactions between gasphase precursor molecules and a solid surface as illustrated in Figure 1 [1]. The surface is first exposed to reactant A, which reacts with initial surface sites. Then, after the products from reaction A are purged, the surface is exposed to reactant B. This reaction regenerates the initial functional groups and prepares the surface for the next exposure to reactant A. The film is grown to the desired thickness by repeating this AB sequence. As the reactions are selflimiting, ALD does not require line-of-sight for deposition and high surface area to volume ratio structures and complex geometries can be conformally coated. Atomic force microscopy (AFM) inspection of Al₂O₃ ALD films deposited on planar surfaces reveals pinhole-free coatings with nearly the same surface roughness as the underlying substrate. Smooth, dense films result when the two reactions are allowed to go to completion. ALD techniques exist for depositing a variety of substances including oxides, nitrides, and metals.

ALD has many important benefits over other more standard thin film deposition techniques such as chemical vapor deposition (CVD). During CVD, the surface is exposed to both reactants at the same time. This allows for gas-phase reactions, which can cause particle formation and poorly controlled growth. During ALD, only one reactant is present at a time so that only surface reactions occur. This insures smooth conformal films with atomic level control over growth. Additionally, ALD can be performed at temperatures well below typical CVD temperatures, thus allowing the coating of relatively fragile materials, such as polymers, without damage.

Al₂O₃ ALD films are deposited using alternating exposures of trimethylaluminum (Al(CH₃)₃, TMA) and water. The chemistry of Al₂O₃ ALD occurs via the following equations where the asterisk represents surface species AlO

$$DH^* + Al(CH_3)_3 \rightarrow AlOAl(CH_3)_3^* + CH_4$$
 (1A)

$$AlCH_3 * + H_2O \rightarrow AlOH * + CH_4$$
 (1B)

At a deposition temperature of 177 °C, the growth rate for Al₂O₃ ALD determined using an *in-situ* quartz crystal microbalance (QCM) is 1.2 Å/cycle and the typical cycle time is 12 seconds [2]. Al₂O₃ films grown by ALD techniques are insulating, amorphous and smooth [3]. Furthermore, the Al₂O₃ ALD surface chemistry is very favorable to growth on a wide variety of substrates including oxides, nitrides, metals, semiconductors [4], and polymeric surfaces [5]. This allows for devices of almost any material to be coated with ALD films. Al₂O₃ ALD can be used for a variety of applications (see list below for some examples).

1. Al₂O₃ ALD films on electrostatically actuated polysilicon cantilever beams prevent electrical shorting and increase the number of actuation cycles before device failure [6].

2. Al₂O₃ ALD films on bilayer (Au/Si) cantilever beams prevent creep during high temperature holding [7].

3. Al_2O_3 ALD films on surface-micromachined gears can serve as friction and wear-resistive coatings [8].

4. Thin Al₂O₃ ALD films (25Å) can serve as adhesion layers for the attachment of hydrophobic precursor molecules, which results in robust and reliable hydrophobic coatings to prevent moisture-induced stiction [9, 10].

5. Alloys of Al₂O₃ ALD and ZnO ALD can be used to prevent stiction due to dielectric charging in gold RF-MEMS devices [11, 12].

6. In a biocompatibility test, adherence of vascular smooth muscle cells was superior on Al_2O_3 ALD surfaces when compared to glass surfaces [13].

7. Al_2O_3 ALD films have been used to construct nano-scale devices such as deformable membranes and cantilever beams [14].

Diethylzinc (Zn(CH₂CH₃)₂, DEZ) and water are the reactants used during ZnO ALD. The AB reaction sequence for ZnO ALD is as follows

$$ZnOH * +Zn(CH_2CH_3)_2 * \rightarrow ZnOZn(CH_2CH_3) * +CH_3CH_3$$
(2A)
$$Zn(CH_2CH_3) * +H_2O \rightarrow ZnOH * +CH_3CH_3$$
(2B)

At a deposition temperature of 177 °C, the growth rate for pure ZnO ALD is 2.0 Å/cycle as determined with an insitu QCM. A typical AB cycle takes 12 seconds. In contrast to the Al₂O₃ ALD films, ZnO ALD films are conducting, polycrystalline and rough [3].

Al₂O₃/ZnO ALD Alloys:

It has been previously established that the resistivity of Al₂O₃/ZnO ALD alloy films can be tuned over a wide range by varying the amount of Zn in the film [15]. Al₂O₃/ZnO ALD alloy films can therefore be designed with a dielectric constant high enough to provide a large down-state capacitance and a resistivity low enough to promote the dissipation of trapped charges. In order to create alloys of Al₂O₃ ALD and ZnO ALD, a percentage of the TMA exposures are replaced by exposures of DEZ [16]. An Al₂O₃/ZnO alloy with 33% DEZ exposures, for example, can be grown by substituting every third TMA exposure with a DEZ exposure. By evenly distributing the DEZ exposures, the Al₂O₃/ZnO ALD alloy is as homogeneous as possible.

In order to perform as an effective dielectric layer, the Al₂O₃/ZnO ALD alloy films must have a high dielectric constant similar to pure Al₂O₃ ALD. Table 1 shows the dielectric constants [12] and resistivities [15] for Al₂O₃/ZnO ALD alloy films. The dielectric constants for the films containing zinc are very similar to the value for the pure Al₂O₃ ALD film, while the resistivities of the films varied from 10^{13} to 10^{16} cm.

% DEZ exposures	0	10	25	33	50
Dielectric Constant	6.8 ± 0.5	6.5 ± 0.4	6.9 ± 0.3	7.2 ± 0.2	6.6 ± 0.3
Resistivity (_ cm)	$\sim 10^{16}$	$\sim 5 \times 10^{15}$	$\sim 5 \times 10^{14}$	$\sim 10^{14}$	$\sim 10^{13}$

Table 1: Dielectric constants and resistivities for Al₂O₃/ZnO ALD films.

Hydrophobic ALD Coating:

The chemical modification of micromachined surfaces can also be achieved using ALD techniques. After completing the H₂O reaction, the Al₂O₃ layer is left with a very high coverage of AlOH* hydroxyl groups at the surface [17]. At room temperature, this hydroxyl coverage is almost twice as large as the coverage of hydroxyl groups on SiO₂ surfaces. Consequently, Al₂O₃ can be used as a seed layer to which precursors that modify the chemical properties of the surface can be attached. Using this technique, highly hydrophobic films have been demonstrated [9, 10]. In this example, hydrophobic perfluorinated alkylsilane precursors are attached through reactions with surface OH groups on the Al₂O₃ ALD surface. This deposition technique results in a dense and conformal hydrophobic film with a water contact angle of $108 \pm 2^{\circ}$. When annealed in air to 300 °C for 10 minutes, the hydrophobic ALD films remained hydrophobic with a contact angle greater than 90°. Using MEMS poly silicon cantilever beam arrays, hydrophobic ALD-coated beams were determined to have an adhesion energy of 0.11 ± 0.03 mJ/m² at 100% humidity as compared with an adhesion energy of 12 ± 1 mJ/m² for the same beams without any coating.

Summary of Measured Properties:

ZnO

- 1. Young's modulus (nanoindentation, $T_{Dep.}=100^{\circ}C$) = 120 140 GPa
- 2. Hardness (nanoindentation, $T_{\text{Dep.}}=100^{\circ}\text{C}$) = ~5 GPa
- 3. Resistivity $(T_{Dep.}=177^{\circ}C) = 1 \times 10^{-2} \text{ cm}$
- 4. Index of refraction $(T_{Dep.}=177^{\circ}C) = 1.95$ 5. Density $(T_{Dep.}=177^{\circ}C) = 5.62 \text{ g/cm}^{3}$

 Al_2O_3 1. Young's modulus (nanoindentation, $T_{Dep.}=100^{\circ}C$) = 150 - 155 GPa

- 2. Hardness (nanoindentation, $T_{Dep} = 100^{\circ}C$) = ~8 GPa
- 3. Residual stress ($T_{Dep.}=177^{\circ}C$, thickness = 30 nm) = 37 MPa
- 4. Index of refraction $(T_{Dep.}=177^{\circ}C) = 1.65$
- 5. Density $(T_{Dep} = 177^{\circ}C) = 3.06 \text{ g/cm}^3$; $(T_{Dep} = 100^{\circ}C) = 2.7 \text{ g/cm}^3$
- 6. Table summarizing electrical properties of Al₂O₃ ALD:

Thickness	Deposition	Resistivity	Leakage	Electric field	Catastrophic	Dielectric
(nm)	temperature	(_ cm)	current	strength	breakdown	constant
	(°C)		(A/cm^2)	(MV/cm)	(MV/cm)	
115	177	1.00E+16	1.00E-10	1		7.5
64	100					6.8
12	177	1.00E+15	2.00E-09	3	5.3	5.9

More information about the University of Colorado's ALD techniques and films can be found at http://ald.colorado.edu.

References

- [1] S. M. George, A. W. Ott, and J. W. Klaus, "Surface chemistry for atomic layer growth," *Journal of Physical Chemistry*, vol. 100, pp. 13121-13131, 1996.
- [2] J. W. Elam, M. D. Groner, and S. M. George, "Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition," *Review of Scientific Instruments*, vol. 73, pp. 2981-2987, 2002.
- [3] J. W. Elam, Z. A. Sechrist, and S. M. George, "ZnO/Al₂O₃ nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements," *Thin Solid Films*, vol. 414, pp. 43-55, 2002.
- [4] M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, "Electrical characterization of thin Al₂O₃ films grown by atomic layer deposition on silicon and various metal substrates," *Thin Solid Films*, vol. 413, pp. 186-197, 2002.
- [5] J. W. Elam, C. A. Wilson, M. Schuisky, Z. A. Sechrist, and S. M. George, "Improved nucleation of TiN atomic layer deposition films on SILK low-k polymer dielectric using an Al₂O₃ atomic layer deposition adhesion layer," *Journal of Vacuum Science & Technology B*, vol. 21, pp. 1099-1107, 2003.
- [6] N. D. Hoivik, J. W. Elam, R. J. Linderman, V. M. Bright, S. M. George, and Y. C. Lee, "Atomic layer deposited protective coatings for micro-electromechanical systems," *Sensors and Actuators A-Physical*, vol. 103, pp. 100-108, 2003.
- [7] K. Gall, M. Hulse, M. L. Dunn, D. Finch, S. M. George, and B. A. Corff, "Thermomechanical response of bare and Al₂O₃-nanocoated Au/Si bilayer beams for microelectromechanical systems," *Journal of Materials Research*, vol. 18, pp. 1575-1587, 2003.
- [8] T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula, and R. S. Goeke, "Atomic-layer deposition of wearresistant coatings for microelectromechanical devices," *Applied Physics Letters*, vol. 82, pp. 2883-2885, 2003.
- [9] C. F. Herrmann, F. W. DelRio, V. M. Bright, and S. M. George, "Hydrophobic coatings using atomic layer deposition and non-chlorinated precursors," *17th IEEE International Conference on Micro Electro Mechanical Systems*, pp. 653-656, 2004.
- [10] C. F. Herrmann, F. W. DelRio, V. M. Bright, and S. M. George, "Conformal Hydrophobic Coatings Prepared Using Atomic Layer Deposition Seed Layers and Non-Chlorinated Precursors," *Journal of Micromechanics* and Microengineering, under review, 2004.
- [11] F. W. DelRio, C. F. Herrmann, N. D. Hoivik, S. M. George, V. M. Bright, J. L. Ebel, R. E. Strawser, R. Cortez, and K. D. Leedy, "Atomic layer deposition of Al₂O₃/ZnO nano-scale films for gold RF MEMS," *Microwave Symposium Digest, 2004 IEEE MTT-S International*, vol. 3, pp. 1923 1926, 2004.
- [12] C. F. Herrmann, F. W. DelRio, S. M. George, and V. M. Bright, "Properties of atomic layer deposited Al₂O₃/ZnO dielectric films grown at low temperature," *Proceedings of SPIE*, in press, 2005.
- [13] D. Finch, K. Ramadurai, T. Oreskovic, C. F. Herrmann, and S. M. George, "Cytotoxicity Study of Vascular Smooth Muscle Cells Applied to Conformal Atomic Layer Deposited Alumina Thin Films for Bio-MEMS Applications," *Biomaterials*, to be submitted, 2005.
- [14] M. K. Tripp, C. F. Herrmann, S. M. George, and V. M. Bright, "Ultra-thin multilayer nanomembranes for short wavelength deformable optics," *17th IEEE International Conference on Micro Electro Mechanical Systems*, pp. 77-80, 2004.
- [15] J. W. Elam, D. Routkevitch, and S. M. George, "Properties of ZnO/Al₂O₃ alloy films grown using atomic layer deposition techniques," *Journal of the Electrochemical Society*, vol. 150, pp. G339-G347, 2003.
- [16] J. W. Elam and S. M. George, "Growth of ZnO/Al₂O₃ alloy films using atomic layer deposition techniques," *Chemistry of Materials*, vol. 15, pp. 1020-1028, 2003.
- [17] A. C. Dillon, A. W. Ott, J. D. Way, and S. M. George, "Surface-Chemistry of Al₂O₃ Deposition Using Al(CH₃)₃ and H₂O in a Binary Reaction Sequence," *Surface Science*, vol. 322, pp. 230-242, 1995.